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ABSTRACT 
Superresolution is the process of producing a high resolution 
image from a collection of low resolution images.  This process 
has potential application in a wide spectrum of fields in which 
navigation, surveillance, and observation are important, yet in 
which target images have limited resolution. There have been 
numerous methods proposed and developed to implement 
superresolution, each with its own advantages and limitations. 
However, there is no standard method or software for 
superresolution.  In this paper a genetic algorithm solution for 
determining the registration and point spread function (PSF) 
parameters for superresolution is proposed and implemented, and 
a superresolved image is generated using genetic algorithm 
optimization of an existing superresolution method.  

Categories and Subject Descriptors 
I.4.0 [Image Processing and Computer Vision]: General – 
Image processing software.  

General Terms 
Algorithms, Measurement, Performance. 

Keywords 
Genetic Algorithms, Superresolution, Registration, Point Spread 
Function. 

1. INTRODUCTION 
The solution space for superresolution problems is usually very 
large, even for relatively small images. The problems are highly 
computationally complex and have highly domain-dependent 
features. The dimensionality of the superresolution problem 
includes that of the unknown high-resolution image as well as that 
of a measurement vector, both of which may be in the hundreds of 
thousands of values. The goal of any superresolution method must 
be to implement a model that will simplify the problem.  

Genetic algorithms combine the utility and complexity of 
problem-solving computer programs with the power and 
simplicity of natural selection. Genetic algorithms are stochastic 
search techniques based on the principles of evolution. Extensive 
research has been performed exploiting the robust properties of 
genetic algorithms and demonstrating their capabilities across a 
broad range of problems. These evolutionary methods have 
gained recognition as general problem solving techniques in many 
applications, including function optimization, image processing, 
classification and machine learning, training of neural networks, 
and system control. 

Instead of attacking the superresolution problem directly with 
highly computationally complex algorithms, genetic algorithms 
can be applied to reduce the problem to the three genetic 
operators—mutation, recombination, and selection. Not only can 
genetic algorithms reduce the complexity of superresolution 
significantly, but genetic algorithms may also be easily mapped 
onto distributed computing systems, which are in essence 
powerful inexpensive supercomputers. 

An overview of existing superresolution techniques is in section 
2. Section 3 outlines the methodology of this genetic algorithm 
experiment to solve the superresolution problem, and section 4 
presents the results. Conclusions are in section 5; future work is 
discussed in section 6. 

2. SUPERRESOLUTION 
Superresolution is the derivation of a high-resolution image from 
a collection of relatively noisy, blurred low-resolution images of 
the same scene. Superresolution seeks to overcome the limitations 
of the imaging device. Because each of the low-resolution images 
is slightly different from the others, by horizontal shift, vertical 
shift, or rotation, these images are ideally combined to extract the 
high frequency details which cannot be captured in any of the 
low-resolution images.  

2.1 Difficulty of Superresolution 
Superresolution is an ill-posed inverse problem [6]. In 
superresolution the task is to use a set of low-resolution images, 
each of which is a representation of an original target object, and 
determine the pixellation of the original object on a more refined 
pixel grid.  The original target image that was the object of the 
low-resolution images through the camera lens is unknown. In the 
standard computer graphics problem, if the camera settings, 
camera orientation to the image, lighting, background, original 
target and so on are known, then the camera image of the object 
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(the low-resolution images) could be determined. In such a case, 
we can figure out what image the camera creates from the target 
object. However, in the inverse problem of superresolution, we 
know only the low-resolution images, we may know the camera 
settings, camera orientation, but not the details of the original 
target object. This inverse problem is highly computationally 
intensive. The problem is ill-posed as the solution is not unique, 
and there is considerable information loss in the generation of 
low-resolution images. To help compensate for the loss of 
information, a priori information is used to place constraints on 
the solution set, such as using smoothness operators. 

The blurring, or degradation, of an image can be caused by many 
factors, such as by movement during the image capture process, 
by the camera or, when long exposure times are used, by the 
subject. Other causes include out-of-focus optics, use of a wide-
angle lens, atmospheric turbulence, or a short exposure time, 
which reduces the number of photons captured. A blurred image 
can be approximately described by the following equation. 

y = Hx + n                                       (1) 

The blurred image is represented by y, H is the distortion 
operator, x is the original true image, and n is the additive noise, 
introduced during image acquisition, that corrupts the image. The 
distortion operator H is also called the point spread function 
(PSF). This function, when convolved with the image, creates the 
distortion. The unknown image x represents the "perfect" image 
of unbounded resolution. 

2.2 Superresolution Methods 
Superresolution was first proposed by Tsai and Huang [6], with 
the utilization of the frequency domain approach to reconstruct 
one improved resolution image from several downsampled 
images, based on spatial aliasing. Many other methods have been 
proposed for superresolution. In the projection onto convex sets 
(POCS) method [13], an initial estimate of the high-resolution 
target image is updated iteratively based on the error measured 
between the observed and synthetic low-resolution images 
obtained by simulating the imaging process with the initial 
estimate as the input. In the Schultz and Stevenson method [12], 
the maximum a priori (MAP) estimator is used with the Huber-
Markov Random Field (HMRF) prior. 

In the iterative method of Irani and Peleg [8], the first step is to 
define a reference low-resolution frame, such as frame 0 in a 
collection of N images. This frame is “upsampled” (expanded) to 
the desired superresolved image resolution, calculating the pixel 
values in the larger image by any one of several methods, such as 
bilinear interpolation. Then the information from the rest of the 
low-resolution images is used to produce a more accurate high-
resolution image. In the iterations of this algorithm, the error of 
each low-resolution image is back-projected to the best guess 
high-resolution image.  

There have been several attempts at superresolution using 
Bayesian methods. One Bayesian method was developed by 
Cheeseman at NASA for reconstruction of planetary images [2]. 
Bayesian methods use Bayes' Theorem, which states that the 
probability of B given A can be found if we know the probability 
of A given B, the probability of A and the probability of B 
separately. In the inverse problem of superresolution, in which we 
know the low-resolution images of the camera, and want to find 

the original target, the Bayesian method assumes that there are 
different images, which could have produced the low-resolution 
images. It is the object of the Bayesian method to find the most 
probable target surface which created the low-resolution images. 
This Bayesian method requires a high degree of computational 
complexity, and is not likely to be modeled and implemented 
efficiently on an ordinary personal computer. 

Another Bayesian method was proposed by Tipping and Bishop 
[14]. The key development of this method is the use of Bayesian, 
rather than simply maximum a priori (MAP), techniques by 
marginalizing over the unknown high resolution image in order to 
determine the low resolution image registration parameters. 
However, the computational cost for this method is so great that 
in the original experiment, patches from the center of the low 
resolution image were used to find the horizontal shift, vertical 
shift, rotation, and point spread function values. These image 
patches were only of size 9 by 9 pixels.  

2.3 Genetic Algorithms and Superresolution 
Genetic algorithms have been used to solve many problems, and it 
is not beyond their scope to solve an ill-posed inverse problem 
such as superresolution.  Evolutionary computation techniques are 
powerful optimization techniques and are suitable for 
optimization problems that arise when solving practical inverse 
problems [10]. Unlike the traditional, gradient based search 
techniques, one characteristic of genetic algorithms is the 
effectiveness and robustness in coping with uncertainty, 
insufficient information and noise. Likewise, genetic algorithms 
are better at handling integer variables than continuous variables, 
because of the structure of the genomes which are implemented. 
A variable in a genetic algorithm is usually implemented within a 
range of values using a binary string of characters. Modeling a 
similar value as a continuous variable greatly increases the 
number of possible values. As all pixel values in the 
superresolution problem are integers, the superresolution model 
works well with genetic algorithms. The values are easily 
constrained with upper and lower bounds, as pixel values may 
range from 0 to 255 for an 8-bit grayscale image. 

3. METHODOLOGY 
3.1 Application of Genetic Algorithms 
Genetic algorithms employ a search technique with simple 
operators, thus simplifying the computational complexity of the 
search, as well as abstracting the search for a solution from the 
specific details of the problem. To solve the superresolution 
problem with genetic algorithms, several different techniques are 
employed. In this experiment, it is assumed that neither the point 
spread function of the camera nor the registration of the low-
resolution images is known. The iterative method of Irani and 
Peleg is modified for genetic algorithms in order to produce a 
superresolved image. The concept of optimizing the point spread 
function and the superresolved image simultaneously is used, as 
found in the Tipping and Bishop method. 

3.2 Superresolution Genome 
In solving the superresolution problem, genetic algorithms are 
applied in two steps. First, a genetic algorithm is employed to find 
the optimal set of registration parameters. Next, another genetic 
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algorithm uses the registration parameters to determine the point 
spread function parameter and the superresolved image. 

In the image registration step, the registration values are arranged 
in an array of integers to create the genome for this experiment. 
For example, for a set of 16 low-resolution images, the genome 
consists of 49 values that are used to code a possible solution to 
the optimization problem. There is one rotation value, one 
horizontal shift value and one vertical shift value for each image, 
and a single PSF value for all images (see Figure 3). 

Figure 1. Superresolution Genome 

 

Constraints are built into the genomes. It is important to limit the 
search using all available a priori knowledge. Not only does this 
speed up the search, but it also helps prevent populations from 
stagnating at local minima with improper values. In this 
experiment, it is known that the point spread function is greater 
than zero. An upper bound can also be placed on the point spread 
function. In like manner, reasonable upper and lower bounds are 
placed on the rotation and horizontal and vertical shift.  

3.3 Fitness Function 
In the first genetic algorithm to determine image registration, each 
genome is composed of an array of values describing the motion 
of each of the low-resolution images. The fitness function uses the 
difference in sub-pixel values of two low-resolution images to 
which the motion parameters have been applied. In a given 
population, one image is compared with each of the other images, 
and the sum of the mean squared error is the fitness value.  

In the second genetic algorithm to determine the point spread 
function and superresolved image, the mean squared error is 
determined for the difference between the superresolved image 
and the upsampled low-resolution images. To upsample the low-
resolution images, each image is expanded to the desired 
resolution, and the point spread function and registration 
parameters are used to create a modified image. Major differences 
between this image and the superresolved image of the genome 
deserve special attention, so some of these pixels are selected for 
mutation. 

3.4 Input Data 
The data for the experiment is taken from a digital camera with 
the same camera settings for each frame. These are like the first 

stop sign image in Figure 6. The camera is moved slightly from 
frame to frame.  In this way, the data contains multiple low-
resolution samples of the real-world image, each of which 
provides additional information about the object. The point spread 
function for all images is assumed to be the same.  

3.5 Crossover 
In the superresolution genome, 2-dimensional crossover was 
implemented for the 2-dimensional array. In order to preserve the 
schema in the arrays, rectangular patches in the parents are 
selected for crossing over. Because this could lead to irregular 
results, it was found that the size of the rectangular patches had to 
be constrained to 3 x 3 pixels. 

3.6 Mutation 
In the superresolution genome, the best guess for the 
superresolved image is represented in a 2-dimensional array of 8-
bit pixel values. In the mutation step, if pixels are mutated 
arbitrarily, without constraints, they will create a salt and pepper 
effect. This could be removed at a later stage using a low-pass 
filter. Another solution is to have constraints on the mutation. In 
this experiment constraints were placed on mutation. Pixels were 
selected for mutation in two ways: (1) in a random selection, and 
(2) when large differences were found in the fitness function 
between the low-resolution images and the superresolved image. 
The possible values for randomly selected pixels were constrained 
to correspond to the range of values of neighboring pixels. The 
possible values for pixels selected from the fitness function were 
constrained to correspond to the low-resolution image values. 

4. RESULTS 
There were over 250 trials in this experiment, with significant 
differences in genetic algorithm parameters, regularization 
parameters, and general methodology. The genetic algorithm 
parameters include the size of the population, selection method 
used, probability of crossover, and probability of mutation. The 
regularization parameters include all types of constraints placed 
on the genomes and calculated values. For instance, the “salt and 
pepper” image was created when no constraints were placed on 
the mutation values—with a high rate of mutation, this resulted in 
many pixels out of normal range. The general methodology 
includes the method used to calculate the superresolved image. A 
thresholding operation was implemented to produce the best 
result, in order to produce more refined edges. The size of the 
superresolved image varied greatly in different trials. The best 
image had a size of 44x44 pixels, improved from a low-resolution 
size of 27x27 pixels.  

The image registration and PSF were determined simultaneously. 
Then the superresolved image was produced. The optimization 
was toward a minimum error of the actual superresolved pixel 
values compared to pixel values of the registered low-resolution 
images. The convergence for best sample trial is also displayed. 

Figure 3. Registration Genome 
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Figure 2. Sample Trial: Salt and Pepper Image 

Early trials demonstrated the need for extensive experimentation 
with the smoothing prior. A lax smoothing prior allowed mutation 
to produce a “salt-and-pepper” effect (see Figure 2). This was the 
result of a relatively high mutation rate, coupled with the failure 
to constrain new mutation values to normal pixel values. Pixel 
values for the grayscale image range from 0 to 255. However, a 
mutated superresolved pixel value must conform to the low-
resolution values in the near neighborhood.  

On the other hand, a smoothing prior that was too strong produced 
an image lacking the high-frequency details. For instance, if a 
pixel value is constrained to be exactly the same value as that of 
its neighbors, or a value that is very close to its neighbors, then 
the high definition values will be lost. The pixel values must be 
allowed to vary significantly in the range defined by the values of 
the low-resolution pixels. A sample result of a trial in which the 
smoothing prior was too constrained is displayed in Figure 5.3. 
The convergence of this trial was fast compared with other trials 
(see Figure 5.4). 

Figure 3. Sample Trial: Excessively Smooth Image 

The constraints placed on the PSF were very important. When the 
PSF was allowed to be very large, the results would quickly 
converge. However, the superresolved image is just a large blur. 
The PSF indicates the blurring of an image from the discretization 
process of the camera. For a very large PSF, all surrounding 
pixels blend into each other. This can produce a circular effect or 
a wavy effect. A sample trial without constraints on the PSF is 
displayed in Figure 4. 

Figure 4. Sample Trial: Unconstrained PSF 

The best trial was 44x44 pixels, improved from 27x27 pixels. The 
high frequency details were preserved, and the edges in the image 
were well-defined. The superresolution process resulted in a much 
brighter, sharper image (see Figure 5.11). 

Figure 5. Sample Trial: Best Image of 250 Trials 

 

Figure 6. Convergence for Best Image 
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Parameters for the best sample trial displayed in Figure 5 are 
listed below. 

Population Size:  75 

Selection:   Roulette Wheel Selection 

Mutation Rate:  0.02 

Crossover Rate:  0.8 

Low-resolution image:  27x27 pixels 

Superresolved image:  44x44 pixels 

 

 

5. CONCLUSIONS 
Superresolution is an inverse ill-posed problem, for which there 
has been limited success in solving in a timely and efficient 
fashion. To achieve superresolution restoration of image 
sequences containing anything more complex than global 
translational motion, a spatial-domain technique is required. 
Furthermore, spatial-domain techniques are able to utilize the a-
priori information necessary to constrain the search space in 
inverse ill-posed problems such as superresolution. In this 
experiment, a genetic algorithm method is implemented as a 
spatial-domain superresolution technique. 

Many trials were performed on a single set of low-resolution 
images in order to find a set of parameters and constraints that 
would efficiently produce a superresolved image. Genetic 
algorithms have been successfully implemented for other inverse 
ill-posed problems, and they are especially useful in solving the 
superresolution problem. The ability to incorporate various 
constraints and the abstraction of the genetic operators from the 
complex details of superresolution provide a good framework for 
superresolution.  

Several results are displayed to demonstrate the ability of the 
genetic algorithm programmer to add various constraints to 
handle different aspects of the superresolution problem. In order 
to best solve the superresolution problem, all available a priori 
knowledge should be applied to the algorithm.  For example, one 
challenge was to balance a data fidelity constraint and a 
smoothing constraint. If a smoothing constraint is too strong, the 
high-frequency content will be limited (as seen in Figure 5.1). 
Likewise, as noted by Baker and Kanade [1], if the resolution 
enhancement factor is too large, the smoothness prior will 
produce a restored image with very little high-frequency content. 

Some of the limitations in superresolution in general concern the 
existence and uniqueness of the solution. There are instances in 
which no solution exists, as when observation noise leads to 
conflicting constraints. Likewise there are instances in which the 
solution is not unique. It is necessary to determine conditions 
under which the iteration converges and whether or not that 
solution is unique. A powerful method for addressing the 
problems of nonexistence, nonuniqueness and continuity failings 
of ill-posed problems is through the use of a-priori knowledge 
which constrains the solution space. To elegantly and effectively 
tackle ill-posed problems, consider methods which utilize a-priori 
constraints to obtain regularized solutions to ill-posed inverse 

problems. This inclusion of a-priori constraints makes high-
quality solutions to even ill-posed inverse problems possible. 

The genetic algorithm experiment is compared with the spatial 
domain method POCS. The advantages of the POCS restoration 
framework include simplistic framework. Some of the 
disadvantages of POCS include the possibility of the 
nonuniqueness of the solution, when the intersection of the 
convex constraint sets is not a point. Other disadvantages include 
the dependence of the solution on the initial estimate, and the 
expensive computational cost, with slow convergence. 

Like POCS, the genetic algorithm method has a simplistic 
framework. The operations of the genetic algorithm are domain-
independent. Unlike the POCS method, the genetic algorithm 
method is not as susceptible to nonuniqueness of the solution. 
Like POCS, the performance of the GA method is dependent on a 
good initial estimate. Also like POCS, the computational cost can 
be rather high, and convergence can be rather slow for such a 
complex problem. 

The genetic algorithm solution for superresolution shares the 
advantages of other spatial-domain methods. The method allows 
flexible observation models, including degradation models 
resulting from problems such as missing pixels. The method also 
allows for inclusion of a-priori information for regularization, 
which is necessary for solving inverse ill-posed problems.  

The genetic algorithm solution also shares several disadvantages 
of other spatial-domain methods. The method is more complex 
and computationally expensive than frequency-domain methods. 

6. FUTURE WORK 
Genetic algorithms and artificial intelligence have each been 
employed to solve many complex problems. In future work it 
would be ideal to combine the strengths of both genetic 
algorithms and artificial intelligence. In an evolutionary system, 
successful genes may propagate faster if the individuals are 
capable of learning. This principle, known as the Baldwin Effect, 
has been demonstrated in an artificial evolutionary system by [2]. 
The evolutionary system would benefit from having genomes 
with the ability to learn. 

The superresolution system described in this experiment will be 
made more sophisticated by adding parameters to take into 
account the noise in the images. Also, the system can be expanded 
to test a more diverse collection of images, such as those in which 
the appearance of the target object begins to change more 
significantly as the camera orientation changes, as from a moving 
aircraft. More varied techniques will also be explored for 
producing the final superresolved image using registration and 
point spread function parameters. 
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